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Abstract—Driven by the well-known limitations of port and
payload-based analysis techniques, the use of Machine Learning
for Internet traffic analysis and classification has become afertile
research area during the past half-decade. In this paper we
introduce a novel unsupervised approach to identify different
classes of IP flows sharing similar characteristics. The unsu-
pervised analysis is accomplished by means of robust clustering
techniques, using Sub-Space Clustering, Evidence Accumulation,
and Hierarchical Clustering algorithms to explore inter-flows
structure. Our approach permits to identify natural groupi ngs of
traffic flows, combining the evidence of data structure provided
by different partitions of the same set of traffic flows. The
technique is further used to build an automatic flow classification
model, using a semi-supervised-learning-based approach.The
approach uses only a reduced fraction of labeled flows to map the
identified clusters into their associated most-probable originating
application, which strongly simplifies its calibration. We evaluate
the performance of our techniques using real traffic traces,
additionally comparing their performance against previously
proposed clustering-based classification methods.

Index Terms—Unsupervised Traffic Analysis, Semi-Supervised
Traffic Classification, Sub-Space Clustering, Evidence Accumu-
lation, Hierarchical Clustering.

I. I NTRODUCTION

Knowing and understanding the traffic that flows today’s
Internet is a critical need for Internet Service Providers.
Network operators need to know what is flowing over their
networks to perform a wide range of network monitoring tasks
such as anomaly detection, traffic control, network security
management, etc. This practical need has motivated an exten-
sive development of the automatic network traffic classification
field, being nowadays a very active research domain.

The objective of automatic traffic classification is to asso-
ciate a flow of packets to the particular network service or
application that generated them. Commonly deployed traffic
classification methods rely on port and payload-based analysis
techniques, both well-known in the field of network traffic
classification. These techniques present important limitations
that highly reduce their effectiveness, particularly due to the
emergence of new dynamic applications and the widespread
use of encryption, tunneling, and protocol obfuscation.

To alleviate the shortcomings of port and payload based
traffic classification, Machine Learning (ML) techniques have
been extensively applied to the problem. ML-based techniques
analyze traffic flows by studying statistical patterns in payload-
independent traffic features such as packet length and inter-
arrival times. Traffic classification methods are developedwith

supervisedML techniques, using a model construction or
learning step in which a mapping between a set of known
traffic categories and their corresponding payload-independent
traffic features is established. Supervised learning requires
a set of labeled traffic flows to construct such a mapping
model, which are generally unavailable and difficult to pro-
duce. Another category of ML techniques is represented by
unsupervisedlearning, an autonomous approach that permits
to partition a set of unknown traffic flows into classes of
similar characteristics, without relying on labeled traffic flows
or learning. This breakdown of traffic flows into a reduced
number of classes permits to simplify traffic analysis tasks, as
it dramatically reduces the number of flows to study.

In this paper we introduce a novel unsupervised learning
approach to identify different classes of flows sharing similar
payload-independent features. The unsupervised analysisis ac-
complished by means of clustering. The objective of clustering
is to partition a set of unlabeled instances into homogeneous
groups of similar characteristics, based on some similarity
measure. In particular, we present adivide & conquerclus-
tering approach, in which we combine the evidence of inter-
flows structure provided by multiple independent partitions of
the same set of flows to build a new inter-flows similarity
measure. As we shall explain, the main advantage of this new
similarity measure is that it better reflects natural groupings.
The clustering approach combines the notions of Sub-Space
Clustering [2], Evidence Accumulation Clustering [3], and
Hierarchical Clustering [1] to build the new similarity measure
and to produce the corresponding clusters. This clustering
technique is further used to build an automatic flow classifica-
tion model, using asemi-supervisedlearning-based approach.
Semi-supervised learning uses a small amount of labeled
instances together with a large amount of unlabeled instances
to train a classifier. In our particular application, we use asmall
fraction of labeled traffic flows to label the clusters produced
by our unsupervised approach. We shall see that even a very
small fraction of labeled flows per cluster is good enough to
build an accurate classification model. Once the clusters have
been labeled any unknown flow can be classified, based on its
“distance” towards the different clusters.

The remainder of the paper is organized as follows: Section
II presents a brief state of the art in the field of automatic traffic
analysis and classification trough ML, additionally describing
our main contributions. In section III we introduce the core
of our proposal, describing the different clustering techniques
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used to accurately retrieve natural groupings. Section IV
describes the semi-supervised learning technique that we use
to construct a fast and accurate traffic classification model.
Section V evaluates our proposals in real network traffic from
the public UNIBS traffic repository [14], accurately labeled by
Ground-Truth techniques [13]. In this section we also compare
the performance of our methods against previous proposals for
unsupervised analysis. Finally, section VI concludes thiswork.

II. RELATED WORK & CONTRIBUTIONS

The field of automatic traffic analysis and classification
trough ML techniques has been extensively studied during the
last half-decade. A standard non-exhaustive list of supervised
ML-based approaches includes the use of Bayesian classifiers
[4], linear discriminant analysis andk-nearest-neighbors [5],
decision trees and feature selection techniques [6], and support
vector machines [7]. Unsupervised and semi-supervised learn-
ing techniques have also been used before for traffic analysis
and classification, including the use ofk-means, DBSCAN,
and AutoClass clustering [8], and a combination ofk-means
and maximum-likelihood clusters labeling [9]. We refer the
reader to [10] for a detailed survey on the different ML
techniques applied to automatic traffic classification.

Our approach presents several advantages w.r.t. current state
of the art in automatic traffic analysis and classification:
firstly, it permits to analyze traffic shares in a completely
unsupervised fashion, which means that it can be directly
plugged-in to any monitoring system and start to work from
scratch, without any kind of calibration and/or training step.
Secondly. it uses robust clustering techniques to identifynat-
ural groupings and avoid general clustering problems such as
sensitivity to initialization, specification of number of clusters,
detection of particular cluster shapes, or structure-masking by
irrelevant features. Thirdly, it performs clustering in very-low-
dimensional spaces, avoiding sparsity problems when working
with high-dimensional data [1].

The semi-supervised model built on top of our unsupervised
approach additionally permits to classify the pre-processed
set of flows, using only a reduced fraction of ground-truth
flows to label the complete set of unlabeled flows. Finally, the
obtained model is extremely simple and permits to classify
new unknown flows in real-time, as it only needs to compute
the distance between the new flow and the labeled clusters.

III. U NSUPERVISEDTRAFFIC ANALYSIS

The unsupervised traffic analysis algorithm takes as input a
set ofn unlabeled traffic flows. Flows are identified by a tradi-
tional 5-tuple hashing-key composed of source and destination
IP addresses, source and destination ports, and protocol. Let
Y = {y1, ..,yn} be this set ofn flows. Each flowyi ∈ Y is
described by a set ofm payload-independent traffic descriptors
or features. Letxi ∈ R

m be the corresponding vector of traffic
features describing flowyi, andX = {x1, ..,xn} ∈ R

n×m the
complete matrix of features, referred to as thefeature space.

Our unsupervised algorithm is based on clustering tech-
niques applied toX. The objective is to breakdown the set of
flows Y into homogeneous groups of similar characteristics.

Unfortunately, even if hundreds of clustering algorithms exist
[1], it is very difficult to find a single one that can handle all
types of cluster shapes and sizes, or even decide which algo-
rithm would be the best for our particular problem. Different
clustering algorithms produce different partitions of data, and
even the same clustering algorithm provides different results
when using different initializations and/or different algorithm
parameters. The lack of robustness is in fact one of the major
drawbacks of current clustering techniques.

To avoid such a limitation, we have developed a divide and
conquer clustering approach, using the notions ofclustering
ensembleand combination of multiple clusterings[11]. The
idea is novel and appealing: why not taking advantage of the
information provided by multiple partitions ofX to improve
clustering accuracy?. Let us briefly introduce the notion of
clustering ensemble. A clustering ensembleP consists of a
set of multiple partitionsPi produced for the same data.
Each of these partitions provides a different and independent
evidence of data structure, which can be combined to construct
a new measure of similarity that better reflects natural group-
ings. There are many different ways to produce a clustering
ensemble. For example, multiple partitions can be obtained
by using different clustering algorithms, or by applying the
same clustering algorithm with different parameters and/or
initializations. In our approach, we use Sub-Space Clustering
(SSC) [2] to produce multiple data partitions, applying the
same clustering algorithm toN different sub-spacesXi ⊂ X

of the original space.

A. Building Partitions through Sub-Space Clustering

Each of theN sub-spacesXi ⊂ X is obtained by se-
lecting r features from the complete set ofm attributes. To
deeply explore the complete feature space, the number of sub-
spacesN that are analyzed corresponds to the number ofr-
combinations-obtained-from-m. Each partitionPi is obtained
by applying DBSCAN [12] to sub-spaceXi. DBSCAN is
a powerful density-based clustering algorithm that discovers
clusters of arbitrary shapes and sizes [1], and it is probably
one of the most common clustering algorithms along with
the widely knownk-means. DBSCAN fits a-priori our un-
supervised traffic analysis paradigm, as it is not necessary
to specify difficult to set parameters such as the number of
clusters to identify. However, it still requires to tune-uptwo
important parameters that define its notion of density, which
highly impacts its performance. We shall come back to this
issue in the evaluations section.

To set the number of dimensionsr of each sub-space, we
take a very useful property of monotonicity in clustering sets,
known as the downward closure property, which basically
states that if a collection of instances is a cluster in ar-
dimensional space, then it is also part of a cluster in any(r−1)
projections of this space. This implies that dense regions of X
will tend to be present in its lowest-dimensional sub-spaces.
Using small values forr provides important advantages: firstly,
doing clustering in low-dimensional spaces is more efficient
and faster than clustering in higher dimensions [1]. Secondly,
density-based clustering algorithms such as DBSCAN pro-
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vide better results in low-dimensional spaces, because high-
dimensional spaces are usually sparse, making it difficult to
distinguish between high and low density regions. In general,
working in low-dimensional spaces avoids sparsity issues such
as masking, density-distortion, etc.. We therefore user = 2 in
our SSC algorithm, which givesN = m(m− 1)/2 partitions.

B. Combining Partitions through Evidence Accumulation

Having produced theN partitions, the question now is how
to use the information provided by the obtained clusters. A
possible answer is provided in [3], where authors introduced
the idea of multiple-clusterings Evidence Accumulation (EA).
EA uses the clustering results of multiple partitionsPi to
produce a new inter-patterns similarity measure which better
reflects natural groupings. The algorithm follows asplit-
combine-mergeapproach to discover the underlying structure
of data. Let us briefly describe the three steps of this algorithm,
particularly adapted for our clustering approach:

(1) In thesplit step, theN partitionsPi of the same dataset are
generated, which in our case they correspond to the partitions
obtained by SSC and DBSCAN.

(2) In the combine step, a new measure of similarity be-
tween flows is produced, using anassociationmechanism;
the underlying assumption in EA is that flows belonging to a
natural cluster are likely to be co-located in the same cluster in
different partitions. Taking the membership of pairs of flows
to the same cluster as weights for their association, theN
partitions are mapped into an×n similarity matrixS, such that
S(i, j) = nij/N . The valuenij corresponds to the number of
times that the pair of flows described by{xi,xj} was assigned
to the same cluster along theN partitions.

(3) In the final merge step, any clustering algorithm can
be applied to matrixS to obtain a final partition ofX in
natural clusters. In our approach we use a simple Hierarchical
Clustering (HC) algorithm known as Single-Linkage (SL).
HC creates a hierarchy of clusters that can be represented
in a tree structure. The root of the tree consists of a single
cluster containing all the instances, and the leaves correspond
to individual instances. SL builds this tree in an agglomerative
fashion: at each step, the algorithm joins together the two
clusters which are closest together. Cutting the tree at a given
height th produces the final partitionP ∗ of our approach.

A pseudo-code of the complete unsupervised clustering
algorithm is provided in algorithm 1. From now on, we shall
refer to this approach as the SSC-EA clustering algorithm. In
line 4, the parameternmin specifies the minimum number of
flows that can be classified as a cluster by DBSCAN, and
ǫ defines the minimum neighborhood-density distance that
permits to group flows into the same cluster. In line5, the
Ck corresponds to the different clusters contained inPt.

IV. SEMI-SUPERVISEDTRAFFIC CLASSIFICATION

The unsupervised separation of flows into multiple classes
simplifies traffic analysis tasks, but it can not be used to
automatically recognize the network-service or application
that generated each class of flows without any additional

Algorithm 1 SSC-EA-based Clustering
1: Initialization:
2: Set similarity matrixS to a nulln× n matrix.
3: for t = 1 : N do
4: Pt = DBSCAN (Xt, nmin, ǫ)

5: UpdateS(i, j), ∀ pair {xi,xj} ∈ Ck and∀Ck ∈ Pt:

6: S(i, j)← S(i, j) + 1

N
7: end for
8: TransformS into a distance matrix:S ← S − 1.
9: Build a SL tree fromS: SLT = SINGLE-LINKAGE (S)

10: Cut SLT at heightth: P ∗ = CUT (SLT, th)

information. In this section we develop an automatic flow
classification model, using a semi-supervised-learning-based
approach on top of the SSC-EA clustering algorithm.

Semi-supervised learning works in a similar way to super-
vised learning, using a training set to construct a classification
model. However, for the same size of training set, semi-
supervised needs only a small fraction of labeled flows to
construct the model, which represents a paramount advantage
w.r.t. supervised-learning, where all the flows of the training
set must be labeled.

Given an unlabeled training datasetXtrain, the classification
model is built as follows: (i) in the first step,Xtrain is
decomposed in clustersCk, using SSC-EA clustering; (ii) in
the second step, a fractionλ of flows per-cluster is randomly
selected; (iii) in the third step, the labels of only these selected
flows are used to classify each of the clustersCk, taking
the most frequent traffic class per cluster as label for the
correspondingCk; (iv) in the last step, the centroidok of
eachCk is computed, obtaining a classification model in the
form of {ok, lk}, wherelk ∈ {app1, app2, .., appM} is to the
label associated to clusterCk, andappi corresponds to one of
theM traffic classes present in the flows described byXtrain.

In order to classify a new unknown traffic flowx we
use a distance-based classification rule, associating tox the
traffic class of the closest cluster, using the standard euclidean
distanced: class(x) = class(arg min

k
d(x,ok)).

V. EVALUATION AND DISCUSSION

In this section we evaluate the SSC-EA clustering technique
and the semi-supervised traffic classification model. We use
real traffic from the public UNIBS-2009 traffic-traces repos-
itory [14]; traces were collected at the edge router of the
campus network of Brescia’s University between the 30/09 and
the 02/10, 2009. Traffic mainly consists of HTTP, Mail (SSL
mainly), P2P (BitTorrent, Edonkey), and VoIP (Skype), and
was generated by a set of workstations running a Ground Truth
(GT) traffic classifier [13]. A GT classifier is a software tool
that accurately associates traffic flows with the corresponding
application that generated them, probing the kernel of the
machine to obtain information on open IP sessions. The dataset
that we use in the following evaluations consists of 2000
flows taken from the first day of traffic. We randomly sample
500 flows for each of the four aforementioned traffic classes:
HTTP, SSL, P2P, and VoIP. Similar to [8], we use an equal
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(a) SSC-EA vs DBSCAN (ǫ = 0.15). (b) SSC-EA vs DBSCAN (nmin = 9).

Figure 1. GA for SSC-EA and DBSCAN, changingnmin and ǫ.

number of flows for each application to fairly evaluate the
clustering ability of our algorithm, avoiding a biased analysis
due to highly unbalanced cluster sizes.

A. Flows and Features

We use NetMATE [15] to process packet traces,
identify flows, and compute feature values. Flows
are identified by the traditional 5-tuple hashing-key
{IPsrc/dst : Portsrc/dst : Protocol}. Flows are bidirectional
and have a limited duration. UDP flows are terminated
by a flow timeout. TCP flows are terminated upon proper
connection tear-down or after a timeout. We consider a 600
second flow timeout, a default value used in previous work
[6]. We consider only UDP and TCP flows with at least one
packet in each direction and at least one byte of payload.
This excludes flows without payload and requests without
responses. We use the same set of 22 payload-independent
traffic features previously used in [6], as these are simple
and well understood traffic descriptors. The list includes
protocol, flow duration, flow volume in bytes and packets,
packet length (minimum, mean, maximum, and standard
deviation), inter-arrival time between packets (minimum,
mean, maximum, and standard deviation). As traces contain
both directions of the flows, features are computed in both
directions.

B. Evaluation Criteria

In order to asses the quality of the clustering results pro-
duced by SSC-EA, we employ two traditionally used indexes:
the Global Accuracy (GA) and the Average per-Cluster Ho-
mogeneity (ACH). Both criteria determine how accurate is the
algorithm to produce homogeneous clusters, i.e., clustersthat
contain a single traffic class. To label a cluster, we simply
take the most frequent traffic class among all of its flows. GA
indicates the percentage of correctly classified flows amongthe
total number of flowsn. ACH indicates the average percentage
of correctly classified flows per cluster. If we defineTP (k)
as the number of correctly classified flows in clusterCk, n(k)
as the size ofCk, andnclusts as the total number of clusters,
then we may express GA and ACH as:

GA =

∑

k

TP (k)

n
,ACH =

∑

k

TP (k)
n(k)

nclusts
,Ri =

TPi

ni

,Pi =
TPi

TPi + FPi
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(a) Average per-cluster homogeneity. (b) Global accuracy.

Figure 2. ACH and GA for SSC-EA vsk-means, for different number of
identified clusters.

To evaluate the semi-supervised classification model, we
consider two additional per-class indexes: Recall and Preci-
sion. RecallRi is the number of flows from classi correctly
classified (TPi), divided by the number of flows in classi (ni).
PrecisionPi is the percentage of flows correctly classified as
belonging to classi among all the flows classified as belonging
to classi, including true and false positives (FPi).

Besides evaluating the quality of the SSC-EA algorithm,
we shall compare its performance against two well-known
clustering approaches, previously used for traffic classification
in [8]: DBSCAN andk-means.

C. SSC-EA vs DBSCAN vsk-means

Figure 1 depicts the global accuracy obtained with SSC-
EA and DBSCAN when changing the two input parameters
of DBSCAN, namelynmin andǫ. In the case of SSC-EA we
have an additional parameter to vary, which corresponds to
the heightth where the tree is cut to obtain the final clusters.
We therefore plot the mean value and the quartiles obtained
for different heightsth, going from the lowest (th = 0.01)
to the highest (th = 0.9) values. The DBSCAN algorithm
does not necessary assign every instance to a cluster; in order
to evaluate its performance, we follow the same approach
used in [8], where every flow that is not assigned to a
cluster is considered as noise. Figure 1.(a) shows that the
SSC-EA algorithm is immune tonmin, as the obtained GA
remains constant at near85% for all the considered range
(both variation ranges fornmin and ǫ were taken from [8]).
In addition, the difference in accuracy when cutting the tree
at different heights is negligible. Both observations provide a
first evidence of strong robustness of the SSC-EA algorithm
against some of its parameters.

Figure 1.(b) shows a marked variation of accuracy for
the SSC-EA algorithm when using very small values forǫ.
However, its value remains constant at near85% for bigger
distances. Regarding DBSCAN, the algorithm identifies many
outliers (flows outside the clusters) when changing both pa-
rameters, which certainly impacts the attained GA. We claim
that better performance could be obtained with DBSCAN if
outliers were assigned to its closest clusters, but this study is
out of the scope of this paper.

Figure 2 depicts the average per-cluster homogeneity and
the global accuracy obtained for SSC-EA andk-means for
different numbers of identified clusters. Changing the value
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of ǫ in SSC-EA permits to produce different clustering trees,
which additionally permits to identify a different number of
clusters. Figure 2.(a) shows that the average cluster homo-
geneity obtained with SSC-EA is almost perfect, indepen-
dently of identified number of clusters. Fork-means, clusters
homogeneity strongly depends on the number of clusters to
construct. Regarding accuracy, both algorithms improve results
when using more clusters; however, using a large number of
clusters is counterproductive, as it reduces the practicalinterest
of doing clustering for traffic analysis. In any case, we can see
that the SSC-EA algorithm still provides high accuracy for a
limited number of clusters.

D. Feature Selection

We now evaluate the impact of feature selection on the
clustering algorithms. Using a large list of traffic features is not
always the best choice, as it may negatively impact clustering
and classification results. As we claimed before, using more
features increments the dimensionality of the feature space, in-
troducing sparsity issues. At the same time, using irrelevant or
redundant features may diminish performance in the practice.

Figure 3 depicts the average per-cluster homogeneity and
the global accuracy for the three clustering algorithms, using
both the complete set of 22 features, and a reduced set of 13
features, obtained by Best First search and Correlation-based
subset evaluation [6]. This approach basically selects features
that are poorly correlated with each other and highly correlated
to the classes of traffic. For DBSCAN and SSC-EA, we take
nmin = 9 andǫ = 0.15, which produces a reasonable number
of clusters, about50 when using 22 features. Fork-means we
use thereforek = 50. Both accuracy and cluster homogeneity
remain almost unchanged for the SSC-EA algorithm, while
vary between7% and 10% for DBSCAN andk-means. It is
interesting to appreciate how the accuracy of both algorithms
improves when removing irrelevant features. As we claimed
before, the SSC-EA algorithm is more robust against irrelevant
or redundant features than standard clustering algorithms.
Another interesting observation is that the number of clusters
obtained by SSC-EA and DBSCAN falls to about30 clusters
when using13 features.

E. Semi-Supervised Traffic Classification

Let us now evaluate the semi-supervised classification
model, built on top of the SSC-EA algorithm. To train and to
test the classification model, we separate the complete set of
flows into a training and a testing set. The training set accounts
for the80% of the flows, while the remaining20% is used as
testing flows. All the evaluations presented in this subsection
use 5-fold cross-validation, which means that we train and we
test the model for 5 different training/testing sets. In addition,
we use the reduced set of 13 features obtained by Feature
Selection. As we explained before, using this reduced set
additionally reduces the number of identified clusters to about
30. Finally, we compare the performance of our approach
with that obtained with the same semi-supervised classification
technique, but using DBSCAN (ǫ = 0.15, nmin = 9) and k-
means (k = 30) to construct the classification model.

SSC−EA DBSCAN k−means
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
ve

ra
ge

 C
lu

st
er

 H
om

og
en

ei
ty

 

 

22 features
13 features

SSC−EA DBSCAN k−means
0.6

0.65

0.7

0.75

0.8

0.85

G
lo

ba
l A

cc
ur

ac
y

 

 

22 features 13 features

(a) Average per-cluster homogeneity. (b) Global accuracy.

Figure 3. Impact of feature selection on accuracy and cluster homogeneity.
The subset is obtained by Best-First search and Correlation-based evaluation.

Figure 4.(a) depicts the global accuracy of the three classi-
fication models as a function of the fractionλ of flows used
for training. As the flows used for labeling each cluster are
randomly chosen, we have run the classification algorithm10
times for each of the 5-fold evaluation datasets and for each
of the 5 different fraction valuesλ = {1, 0.5, 0.1, 0.05, 0.01}.
Depicted results include the obtained mean global accuracy,
as well as the minimum and maximum values. The first
interesting observation is that the semi-supervised approach
performs with high accuracy even when using a fraction as
small as1% of labeled flows per cluster. At the same time,
the advantages of the SSC-EA clustering algorithm previously
evidenced also provide a better classification performancethan
traditional approaches.

To conclude with the evaluation section, figures 4.(b) and
4.(c) present the values of precision and recall obtained with
the three models, for each of the four different traffic classes.
The fraction of sampled flowsλ is 5%. P2P traffic is systemat-
ically misclassified by the three models, obtaining a lower true
positives rate (recall). Note however that both the SSL and the
VoIP traffic are accurately classified, obtaining precisionand
recall values close to100%. Finally, HTTP traffic presents a
relatively better performance than P2P traffic, but still provides
poor results. A deeper evaluation of these results is part ofour
ongoing work.

VI. CONCLUDING REMARKS

In this paper we addressed the problem of unsupervised
and semi-supervised traffic analysis and classification via
clustering. We introduced the SSC-EA clustering algorithm,
a novel clustering approach which proved to be more robust,
consistent, and accurate for traffic analysis and classification
than two well-known clustering approaches previously used:
DBSCAN and k-means. The semi-supervised model built
on top of the SSC-EA algorithm additionally showed high
performance classification, using just a5% of labeled flows for
training issues. We claim that this classification model permits
to classify new unknown flows in real-time, as it only needs
to compute about30 distance values to provide a verdict.
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